If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2=-3z
We move all terms to the left:
z^2-(-3z)=0
We get rid of parentheses
z^2+3z=0
a = 1; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·1·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*1}=\frac{-6}{2} =-3 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*1}=\frac{0}{2} =0 $
| 9x+7=7+35 | | -9(d+2)=4(15-d) | | 2/9=3/2(4/9x+5) | | 7x-(3x-9)=29 | | 9=4t^2 | | 6d+4=10d-32 | | q^2-81=0 | | 1/12=x/8 | | 35q=5 | | 1/4y-9=1/6y | | -3(4b-10)=1/2(-24b+6) | | 4x+7=-8x+1 | | 2.3g=7.13 | | 3+5q=5-7q | | -20+3(x+4)=13x-6(x-4) | | 3+5a=5-7a | | j+5050=9999 | | x/4=-20/10 | | 6(1,170+w)=10,830 | | 55=11x | | 10/20=4/x | | 5x+3.50=13 | | 6t=7t-6 | | 6/10=155/x | | 72=0.6r | | 0=K^2-4k | | 96=12f | | n-5=10-5= | | ((x+5)/4)+((x+6)/5)=1 | | -2(2x+3)+2=x+5 | | 14u=70 | | 4(j+14)=72 |